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Abstract. A 7-year (2010-2016) comparison study between measured and simulated longwave downward radiation (LDR)

under cloud-free conditions has been performed at the Izaña Atmospheric Observatory (IZO, Spain). This analysis encom-

passes a total of 2062 cases distributed almost 50% between day and night. Results show an excellent agreement between

Baseline Surface Radiation Network (BSRN) measurements and simulations with LibRadtran V2.0.1 and MODTRAN V6

radiative transfer models (RTM), similar for both models. Mean bias (simulated-measured) <1.1%, and root mean square error5

(RMSE) <1%, are within the instrumental error (2%). These results highlight the good agreement between the two RTMs,

demonstrating to be useful tools for LDR measurement quality control and for detecting temporal drifts in field instruments.

The standard deviations of the residuals, associated to the RTM input parameters uncertainties are rather small, 0.47% and

0.49% for LibRadtran and MODTRAN, respectively, at day-time, and 0.49% to 0.51%at night-time. The observed night-time

difference between models and measurements is +5 Wm−2, for precipitable water vapor (PWV) > 10 mm, indicating a scale10

change of the World infrared standard group of Pyrgeometers (WISG), which serves as reference for atmospheric longwave

radiation measurements.

1 Introduction

The longwave downward radiation (LDR) at the Earth’s surface is a key component in land-atmosphere interaction processes,

and is crucial in the surface energy budget and global climate change, because the changes in the LDR values may be related15

to changes in cloud-cover, temperature, and the increase of anthropogenic greenhouse gas concentrations in the atmosphere

(Wild et al., 1997; Marty et al., 2003). Thus, LDR measurements and simulations are needed to understand the processes

involved in the changes on the LDR sources and levels, and their possible relations with the sources of climate change (Dutton,

1993; Wild et al., 2001).

1

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-303
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.



Atmospheric longwave irradiance measurements are usually performed with hemispherical receivers on flat horizontal sur-20

faces. The LDR is mainly measured with pyrgeometers, with the Eppley Precision Infrared Radiometer (PIR), EKO MS-201

Precision Pyrgeometer, and Kipp and Zonen CG series (McArthur, 2005) being the most used. These latter pyrgeometers have

been designed for LDR measurements with high reliability and accuracy. The spectral range covers from 4 to 42 µm with an

expected sensitivity of 5 to 15 µV/Wm−2, an uncertainty < 3% for daily totals, and an estimated inaccuracy < 7.5 Wm−2

(Kipp and Zonen, 2014). The estimated uncertainty for LDR instantaneous values, indicated by the Baseline Surface Radia-5

tion Network (BSRN) in 2004, is 3 Wm−2 (2%) (Ohmura et al., 1998; McArthur, 2005). These values account for calibration

uncertainties and are estimated from standard deviation of the calibration coefficients.

At the beginning of the 20th century, several methods and equations were developed to estimate LDR when or where no

measurements were available. The first parameterization of the LDR was developed by Ångström (Angstrom, 1918), who

developed an empirical relationship between cloud-free emissivity and water vapour pressure at the surface. Following the10

pioneer work of Ångström, several authors (i.e. Brunt (1932); Swinbank (1963); Idso and Jackson (1969); Brutsaert (1975);

Prata (1996)) proposed diverse relationships capable of simulating LDR based on relations between LDR, vapour pressure,

temperature and the Stefan-Boltzmann constant, since the theoretical basis of this parameterization is the assumption that the

atmosphere behaves as a grey body:

LDR = ϵ(T,e)σT 4 (1)15

In this equation ϵ(T,e) is the cloud-free atmospheric emissivity, T and e are the air temperature and the water vapor pressure

measured at the surface, respectively, and σ is the Steffan-Boltzmann constant (5.67x10−8 Wm−2 K−4). The above mentioned

parameterizations show accuracies ranging from 9% to 15% in low altitude sites while at high altitude sites the LDR estimations

present uncertainties ranging from 12% to 21%. More recently, Iziomon et al. (2003) presented an improved parameterization

that reduces the uncertainties to 6% for lowland sites and 7% for mountain sites for all-sky conditions. Ruckstuhl et al. (2007)20

showed that the monthly mean LDR can be effectively modelled from specific humidity or water vapour obtaining differences

< 5%. Dupont et al. (2008) presented a more sophisticated parameterization based on the vertical profiles of temperature and

humidity obtaining uncertainties of ∼5 Wm−2 for cloud-free conditions, for both day-time and night-time.

The need to provide more accurate LDR estimates from models to improve climate forecasting, led to the introduction of

Radiative transfer models (RTMs) adapted or developed to simulate such LDRs. There exist several studies in the literature25

aiming to compare measured and simulated LDR (Morcrette, 2002; Dürr et al., 2005; Marty et al., 2003; Long and Turner,

2008; Wacker et al., 2011; Viúdez-Mora et al., 2009; Viúdez-Mora et al., 2015). The key point in these studies is the use, as

model inputs, of data from radio soundings launched at the measurement site which provide vertical profiles of humidity,

pressure and temperature.

An intercomparison performed by Schweizer and Gautier (1995) with LOWTRAN model under cloud-free conditions showed30

that the model simulations generally exceed measured LDR values with a bias of -0.7±11 Wm−2 and a root mean square error

(RMSE) of 10.6 Wm−2 (4% of the measured values). In a similar study, Viúdez-Mora et al. (2009) compared LDR measure-
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ments and simulations, under cloud-free conditions, with Santa Barbara Disort Atmospheric Radiative Transfer (SBDART;

(Ricchiazzi et al., 1998)) at two different sites, Payerne (Switzerland) and Gerona (Spain) obtaining differences of -2.7±3.4

Wm−2 and 0.3±9.4 Wm−2, respectively. Dürr et al. (2005) found a good agreement between LDR measurements and simula-

tions with the MODerate resolution atmospheric TRANsmission model (MODTRAN; Berk et al. (2000)), with values of -1.5

Wm−2 and -3.2 Wm−2 for night-time (274 cases) and day-time (94 cases), respectively, at Payerne station.

The main goal of this work is to compare BSRN LDR measurements with simulations made with two complex models using5

observed and modelled data from a relatively long period (between 2010 and 2016). The Izaña Atmospheric Observatory (IZO)

is an optimal station to carry out this study, because all the model input parameters (precipitable water vapor (PWV), aerosol

optical depth (AOD), total ozone, N2O in-situ, CO2 in-situ, CO2 profile and meteorological radiosondes) are measured at the

station. This work is divided into six sections. Section 2 describes the main characteristics of the IZO test site. In section 3

the technical description of instruments and measurements performed at IZO are shown, as well as the method used for the10

detection of cloud-free days. Section 4 introduces the LibRadtran and MODTRAN models and the model input parameters

used in this work as well as a theoretical quality assessment of the simulations made with both models. The results of the

comparison and the temporal stability are shown in section 5, and finally, the summary and conclusions are given in section 6.

2 Site Description

The Izaña Atmospheric Observatory (IZO, http://izana.aemet.es) is a high-mountain observatory located in Tenerife (Canary15

Islands, Spain at 28.3◦N, 16.5◦W, 2373 m a.s.l.). IZO is managed by the Izaña Atmospheric Research Center (IARC) which

forms part of the Meteorological State Agency of Spain (AEMET). Its situation in the Atlantic Ocean and above a stable

inversion layer, typical for subtropical regions, provides clean air and clear sky conditions most of the year, offering excellent

conditions for calibration and validation activities. In 1984, IZO became a member of the World Meteorological Organization

(WMO) Background Atmospheric Pollution Monitoring Network (BAPMoN) and in 1989 it became a Global Atmosphere20

Watch (GAW) station. In addition, it has actively contributed to international radiation networks and databases such as NDACC

(Network for the Detection of Atmospheric Composition Change; http://www.ndsc.ncep.noaa.gov/) since 1999, AERONET

(Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) since 2004, TCCON (Total Carbon Column Observing Network;

http://www.tccon.caltech.edu/) since 2007 and the BSRN since 2009, among others. Moreover, since 2014, IZO was appointed

by WMO as a CIMO (Commission for Instruments and Methods of Observation) Testbed for aerosols and water vapor remote25

sensing instruments (Organization, 2014). Updated details of the site and the observation programs can be found in Cuevas et al.

(2015, 2017).

3 Instrument and Measurements

The LDR measurements used in this study have been performed by the Izaña BSRN (#61, IZA; http://www.bsrn.aemet.es)

(García et al., 2012) with a broadband Kipp & Zonen CG4 pyrgeometer (onwards, CG4). The specially designed meniscus30
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Table 1. CG4 pyrgeometers installed between 2010 and 2016 at IZO.

Instrument C[µV/Wm−2] Calibration Date

CG4 Kipp & Zonen #080022 10.37±0.34 February 2008

CG4 Kipp & Zonen #050783 9.39±0.31 June 2014
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Figure 1. The LDR time series obtained at (a) day-time and (b) night-time with a CG4 pyrgeometer between 2010 and 2016 at IZO BSRN

(blue dots). The black and green lines represent the physically possible (Min PP, Max PP) and extremely rare limits (Min ER, Max ER),

respectively and the grey and red dots represent the upper (σ T4 + 25) and lower (0.4 σ T4) limit, respectively, where σ is Stephan-Boltzmann

constant (5.67x10−8 Wm−2K−4) and T is the air temperature in K.

dome provides a 180◦ field of view with negligible directional response error. A diamond-like surface protects the outer

surface of the window, while the inner surface filters all solar radiation. The design of the instrument is such that solar radiation

absorbed by the windows is conducted away to reduce the solar heating effect. This fact reduces the need for dome heating

correction terms and shading from the sun (McArthur, 2005).

In this study, we analyzed measurements performed with two CG4s (see Table 1) between 2010 and 2016 at IZO. The

CG4#080022 was calibrated by the manufacturer in February 2008 at Holland (Kipp & Zonen) and the CG4#050783 was5

calibrated in June 2014 at PMOD/WRC (Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center).

The World Radiation Monitoring Center (WRMC) recommends performing quality checks to BSRN data attending to phys-

ically possible (PP, minimum 40 - maximum 700 Wm−2) and extremely rare LDR limits (ER, minimum 60 - maximum 500

Wm−2), as well as considering the comparison between LDR and air temperature (Long and Dutton, 2010). We have applied

these BSRN quality controls to the IZO LDR measurements and found that the LDR measurements are within the above10

mentioned limits (Figure 1).
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3.0.1 Cloud-free detection

The cloud-free days were detected by using the Automatic Partial Cloud Amount Detection Algorithm (APCADA; Marty and Philipona

(2000); Dürr and Philipona (2004)). In this algorithm, a Clear-Sky Index (CSI) is calculated to separate cloud-free from cloud-

sky situations using accurate measurements of LDR in conjunction with air temperature and relative humidity values measured

at the station. The CSI index is defined as:

CSI = ϵA/ϵAC (2)5

where

ϵA = LDR/σT 4 (3)

ϵAC = ϵAD +(k +2σ)(e/T )1/8 (4)

where σ is the Stephan-Boltzmann constant, T is the air temperature (K), ϵAC is an altitude-dependent emittance of a10

completely dry atmosphere, e is the water vapor pressure (Pa), and k is a constant coefficient dependent on the location. If CSI

Index ≤1 is cloud-free, and if CSI Index >1 is cloud-sky (Marty and Philipona, 2000).

In order to calculate ϵAC this method requires the evaluation of ϵAD and k (equation 4). A sample of known cloud-free

days is used to plot ϵAC against e/T (Figure 2). The cloud-free condition of this sample is assured by applying the Long and

Ackerman’s method (Long and Ackerman (2000); adapted for IZO by García et al. (2014)). This method is based on 1-minute15

global and diffuse solar radiation surface measurements, and consists in four individual tests applied to normalized global

radiation magnitude, maximum diffuse radiation, change in global radiation with time, and normalized diffuse radiation ratio

variability. We have considered the period 2010-2016 at 11 UTC to determine the fitting coefficients of equation 4 obtaining

the following relationship (Figure 2):

ϵAC = 0.218+ 0.385(e/T )1/8 (5)20

Considering that ϵAD depends on the altitude of the station, we have obtained a value of 0.218 for IZO, similar to the values

obtained by Marty and Philipona (2000) for stations located between 2230 and 2540 m a.s.l. (0.22 and 0.211, respectively).

Once we have adjusted the coefficients, the cloud-free periods were selected with a combination of Long and Ackerman

and APCADA methods. At day-time, we have used the Long and Ackerman method taking into account for each day the time

period 11-13 UTC. At night-time, the APCADA was applied in the time period 23-01 UTC. A total of 1161 and 1083 cases25

were detected in the period 2010-2016, for day-time and night-time, respectively.

4 Radiative transfer models and input parameters

The simulations of surface LDR were determined with two RTMs: LibRadtran and MODTRAN models.
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Figure 2. Apparent emittance as a function of the ratio of screen level water vapor pressure and temperature at IZO in the period 2010-2016

at 11 UTC.

The LibRadtran model (freely available from http://www.libradtran.org; Mayer and Kylling (2005)) used in this work is the

version 2.0.1 (Emde et al., 2016). The simulations were performed with highly resolved absorption coefficients that were cal-

culated using the absorption band parameterization called REPTRAN. It is based on the HITRAN 2004 spectroscopic database,

in which wavelength-integrals have been parameterized as weighted means over representative wavelengths (Gasteiger et al.,

2014). The simulations performed using REPTRAN in the thermal range showed relative differences of about 1% with respect

to simulations performed with high spectral resolution models and they are 6-7 times better than the simulations done with the5

LOWTRAN band parameterization (Gasteiger et al., 2014).

The MODTRAN version used in this work is the MODTRAN v6 1 cm−1 statistical band model (Berk and Hawes, 2017),

an atmospheric transmittance and radiance model developed by the U. S. Air Force Research Laboratory in collaboration
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with Spectral Sciences, Inc. This model is able to efficiently simulate molecular and cloud-aerosol emissions at any viewing

geometry.

4.1 Input parameters

In both models, the LDR simulations were calculated by using as radiative transfer equation (RTE) solver the Disort (DIScrete

ORdinate Radiative Transfer solvers), developed by Chandrasekhar (1960) and Stamnes et al. (1988, 2000), and based on the

multi-stream discrete ordinates algorithm. The number of streams used to run Disort was 16. For each simulation, the integrated5

downward irradiance has been calculated in the spectral range 4-100 µm.

In this work, we have used the meteorological radiosondes dataset from IARC-AEMET. Radiosonde profiles have a temporal

resolution of 12 h (at 11 and 23 UTC) and were launched at Güimar station (WMO GRUAN station #60018, 105 m a.s.l.).

This station is located at the coastline, approximately 15 km to the southeast of IZO. Vertical profiles of pressure, temperature

and relative humidity were measured using Vaisala RS92 radiosondes (Cuevas et al., 2015; Carrillo et al., 2016).10

Since January 2009, the PWV has been obtained at IZO from a GNSS (GPS-GLONASS) receiver considering GPS precise

orbits with a temporal frequency of 1 h (Romero Campos et al., 2009). In this work, we have considered the median value of

PWV measured between 11-13 and 23-01 UTC in order to take into account the radiosonde flight time, and hence making

possible a comparison with GNSS observations.

The volume mixing ratio (VMR) profiles of the atmospheric CO2 and N2O trace gases were used. These were obtained15

from the monthly average profiles performed with the ground-based Fourier Transform InfraRed spectrometer (FTIR) at IZO

between 1999 and 2015 (Schneider et al., 2005; García et al., 2014; Barthlott et al., 2015). The FTIR program at IZO is part

of the Network for the Detection of Atmospheric Composition Change (NDACC, http://www.ndsc.ncep.noaa.gov/). In this

study we have used FTIR climatologic profiles, scaled on a daily basis with ground-level in-situ CO2 and N2O mixing ratios,

continuously measured at IZO since June 1984 and June 2007, respectively, within the WMO GAW programme (Cuevas et al.,20

2015, 2017).

Since 2007 the CO2 in-situ measurements have been performed with a NDIR analyzer (LICOR-7000) (Gómez-Peláez and Ramos,

2009; Gómez-Peláez et al., 2010) and the N2O in-situ measurements with a VARIAN (GC-ECD 3800) (Scheel, 2009). We have

used in this work only the night-time (20-08 UTC) averaged CO2 and N2O data because during this period IZO is under free

troposphere conditions, and the observatory is not affected by local and regional sources of such gases.25

The atmospheric aerosols are included in the simulation process by means of the column-integrated AOD, extracted from

AERONET (Level 2.0 of version 2, cloud screened and quality ensured). The AOD is obtained from solar observations per-

formed with CIMEL sunphotometers at different wavelengths (Holben et al., 1998; Dubovik and King, 2000; Dubovik et al.,

2006). In this work, we have used AOD at 500 nm as model input. For day-time we have used the nearest AOD value to the 11

UTC, and for night-time the last AOD value of the day.30

Measurements one of total ozone column (TOC) with Brewer spectrometer began at IZO in 1991. Since 2003 IZO has been

appointed the Regional Brewer Calibration Center for Europe (RBCC-E; http://www.rbcc-e.org) and the total ozone program

has been part of NDACC. We have considered daily total ozone mean value as model input.
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Table 2. Assumed Type A uncertainty in the input parameters and their corresponding references

Uncertainty Source Standard Uncertainty (δ) Reference

AOD ±0.01 Holben et al. (1998); Eck et al. (1999)

TOC ±1% Redondas and Cede (2006)

PWV < 3.5mm: ±20% Schneider et al. (2010)

≥ 3.5mm: ±10%

N2O in-situ ±0.2 ppbv Gómez-Peláez and Ramos (2009)

CO2 in-situ ±0.1 ppmv Zellweger et al. (2015)

N2O profile (FITR) 2.37-20 km: ∼1% García et al. (2016)

>20 km: 2.0 - 2.5%

CO2 profile (FTIR) 0.3% García et al. (2016)

Temperature profile 1080-100 hPa: 0.2◦C

100-20 hPa: 0.3◦C Vaisala (2013)

20-3 hPa: 0.5◦C

RH profile 2% Vaisala (2013)

4.2 Uncertainty due to the input parameters

In this section, we have estimated the theoretical uncertainty for the LibRadtran and MODTRAN LDR simulations due to

the uncertainties in the input parameters. According to the Guide to the expression of uncertainty in measurement (GUM)

(BIPM et al., 2008), we have assumed the Type A uncertainties listed in Table 2.

Our uncertainty estimation is based on two steps: first, the LDR simulations were conducted using the measured values

for all the input parameters listed in the previous section, obtaining the non-perturbed values (Sim). In a second step, we5

have simulated again the same sample but applying the uncertainties listed in Table 2, giving the perturbed values (Sim +

δ) (Schneider and Hase, 2008; García et al., 2014). This uncertainty estimation has been applied to those cloud-free days for

which all the inputs were available at 11 and 23 UTC between 2010 and 2016 (1048 and 1014 cases at 11 and 23 UTC,

respectively). Note that the errors of the FTIR CO2 and N2O profiles have been theoretically estimated by following the

formalism detailed by Rodgers (2000) and assuming the uncertainty sources and values shown in García et al. (2016).10

For each uncertainty component we obtain the standard deviation of the measurement residuals from the scatter around the

regression line which is related to the correlation coefficient of the least squares fit and the scatter of the perturbed distribution.

The results of the total uncertainty amount analysis are summarized in Table 3. The uncertainties of the PWV and AOD

dominate the total uncertainty amount with respect to the other components. The uncertainty of PWV presents a scatter of

0.84 Wm−2 (0.46%) at day-time, and 0.86 Wm−2 (0.48%) at night-time for LibRadtran. The results are very similar for the15

MODTRAN, with a scatter of 0.85 Wm−2 (0.46%) at day-time and 0.91 Wm−2 (0.50%) at night-time. The AOD is also a

significant uncertainty source with a scatter of 0.30 Wm−2 (0.09%) at day-time and lower scatter at night-time, observing a

8
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Table 3. Estimation of Type A uncertainties (in Wm−2 and in % (in brackets)), Sensitivity (%), and Bias (Wm−2) of the difference between

non-perturbed and perturbed LDR simulations (Simulation- (Simulation+ δ)) with LibRadtran and MODTRAN models. The combined

uncertainty is calculated as the root square sum of all the uncertainty components.

Uncertainty component LDR(day-time) LDR(night-time)

STD of the residuals Regression STD of residuals Regression

Wm−2 (%) (Sens/Bias) Wm−2 (%) (Sens/Bias)

(Sim+δ) (%)/Wm−2 (Sim+δ) (%)/Wm−2

LibRadtran model

AOD 0.30 (0.09) -0.73 / 1.65 0.23 (0.08) -0.46 / 1.01

TOC(DU) <0.01(<0.01) <0.01 / <0.01 <0.01(<0.01) <0.01 / <0.01

PWV(mm) 0.84 (0.46) -1.20 / 6.26 0.86 (0.48) -1.42 / 6.89

CO2 in-situ(ppm) <0.01(<0.01) <0.01 / <0.01 <0.01(<0.01) <0.01 / <0.01

N2O in-situ (ppb) <0.01(<0.01) <0.01 / <0.01 <0.01(<0.01) <0.01 / <0.01

Temperature profile <0.01(<0.01) <0.01/ <0.01 0.03(<0.01) <0.01 / <0.01

RH profile <0.01(<0.01) <0.01 / <0.01 <0.01(<0.01) <0.01 / <0.01

Combined uncertainty (u) 0.89 (0.47) 0.88 (0.49)

MODTRAN model

AOD 0.39 (0.16) 0.59 / -1.37 0.27 (0.10) 0.42 / -0.91

TOC(DU) <0.01(<0.01) <0.01 / <0.01 <0.01(<0.01) <0.01 / 0.03

PWV(mm) 0.85 (0.46) -1.18 / 6.19 0.91 (0.50) -1.48 / 7.03

CO2 in-situ(ppm) <0.01(<0.01) <0.01 / <0.01 <0.01(<0.01) <0.01 / <0.01

N2O in-situ (ppb) <0.01(<0.01) <0.01 / <0.01 <0.01(<0.01) <0.01 / <0.01

Temperature profile <0.01(<0.01) <0.01/ <0.01 0.02(<0.01) <0.01 / <0.01

RH profile <0.01(<0.01) <0.01 / <0.01 <0.01(<0.01) <0.01 / <0.01

Combined uncertainty (u) 0.89 (0.47) 0.88 (0.49)

bias of 1.01 Wm−2 for LibRadtran, and a bias of 0.39 Wm−2 (0.16%) at day-time for MODTRAN. The PWV uncertainties

present lower scatter at day-time than at night-time, contrary to that observed in the study of the AOD uncertainty for both

models. In general, we find that the standard deviations of the LDR residuals are rather small: 0.89 Wm−2 (0.47%) and 0.93

Wm−2 (0.49%) at day-time, and 0.88 Wm−2 (0.49%) and 0.95 Wm−2 (0.51%) at night-time, for LibRadtran and MODTRAN,

respectively.
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Figure 3. Scatterplot of the LDR (Wm−2) simulations with LibRadtran (blue color) versus BSRN LDR (Wm−2) at cloud-free (a) day-time

and (d) night-time. Scatterplot of the MODTRAN LDR (Wm−2) (red color) versus BSRN LDR (Wm−2) at (b) day-time and (e)night-time,

and scatterplot of the MODTRAN LDR (Wm−2) (black color) versus LibRadtran LDR (Wm−2) at (c) day-time and (f) night-time. The black

solid lines are the diagonal (x=y). The dashed lines represent the least-square fits and the fitting parameters are shown in the legend.

5 Results5

5.1 BSRN vs Model LDR comparison

In this section, we present the comparison between LDR measured with BSRN and simulated with LibRadtran and MOD-

TRAN, considering the available and coincident cloud-free BSRN at day-time and night-time, and the inputs indicated in

section 4.1 at IZO between 2010 and 2016. A total of 1048 measurements at day-time, and 1014 measurements at night-time

were used. The simulations with the two models show an excellent agreement at both day-time (Figure 3a and 3b) and night-5

time (Figure 3d and 3e). Both models show a very similar performance, as indicated by the least-square fit with slope of 0.99

and R of 0.999, with a slightly better similitude during the night-time (Figure 3c and 3f).

In order to quantify the difference between BSRN LDR and simulations, we have calculated the absolute difference or bias

(simulation-measurement, in Wm−2) , and relative differences ((simulation-measurement)/measurement, in %). As a summary,

Table 4 lists the metrics used to quantify these differences.10
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Table 4. Statistics for the bias between LibRadtran and MODTRAN simulations and BSRN LDR at IZO (in Wm−2) performed with data

at day-time (1075 cases) and night-time (1014 cases) in the period 2010-2016 (MB, mean bias; STD, standard deviation; RMSE, root mean

square error and R, correlation coefficient Pearson). The statistics for the relative bias are in brackets (in %).

Day-time Night-time

MB STD RMSE R MB STD RMSE R

BSRN/LibRadtran -1.73 5.92 6.52 0.981 0.15 4.41 4.41 0.988

(-1.1%) (2.3%) (2.6%) (0.1%)) (1.9%)) (1.8%)

BSRN/MODTRAN -1.79 6.01 6.30 0.988 1.14 4.39 4.53 0.981

(-0.7%) (2.4%) (2.5%) (0.5%) (1.9%) (1.9%)

LibRadtran/MODTRAN 0.94 0.84 1.26 0.999 1.00 0.71 1.23 0.999

(0.4%) (0.4%) (0.5%) (0.4%) (0.3%) (0.5%)

The results obtained show that both models have a very similar behavior and yield similar performances, as seen in Figures 3c

and 3f. Both models underestimate the LDR at day-time between -1.73 Wm−2(-1.1%) for BSRN/LibRadtran, and -1.79 Wm−2

(-0.7%) for BSRN/MODTRAN. In addition, at night-time, both models overestimate with respect to BSRN LDR between

0.15 Wm−2 (0.1%) for BSRN/LibRadtran, and 1.14 Wm−2 (0.5%) for BSRN/MODTRAN. The RMSE is < 3% for both

comparisons at day-time, and < 2% at night-time.

The comparison between BSRN LDR and simulations present better results (lower MB, STD and RMSE) during night-time5

than during day-time. These results also agree with other short-term studies. For example, Dürr et al. (2005) found differences

between LDR measurements and simulations with MODTRAN of -3.2 Wm−2 and 1.5 Wm−2 for day-time (94 cases) and

night-time (274 cases), respectively. Wacker et al. (2009) compared the measurements and simulations with three different

models for 39 cloud-free nights in Payerne, finding differences of -1.2 ± 2.5 Wm−2 with MODTRAN, and 6.0 ± 2.9 Wm−2

with LOWTRAN. Viúdez-Mora et al. (2009) found differences of -2.7±3.4 Wm−2 for a total of 44 night-time cases between10

LDR measurements and simulations with SBDART in Payerne.

According to the results obtained in Section 4.2, the uncertainties on PWV dominate the total uncertainty, thus, the LDR bias

has been analyzed. The box plot of LDR bias for different PWV is presented in Figure 4. Both models tend to underestimate

LDR (up to 5 Wm−2) in the case of day-time measurements with PWV<9 mm (Figure 4a). Around zero bias is observed for

higher PWV, although it is necessary to emphasize that the number of data in this PWV range (between 4% and 5%) is much15

lower. At night-time, the dependence of LDR bias with PWV shows a negligible bias under dry conditions (PWV<6 mm),

and a slight overestimation of both models (up to 5 Wm−2) for higher PWV values (Figure 4b). These results are consistent

with those obtained by Gröbner et al. (2014); Nyeki et al. (2017) which argue that the World Infrared Standard Group (WISG)

of pyrgeometers has a negative bias of about 5 Wm−2 under cloud-free conditions and PWV>10 mm. The small differences

observed in the evolution of the bias with the PWV (close to the instrumental error) found between day-time and night-time20

are not currently understood. It is likely that this different behavior between day and night may be associated with instrumental

11

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-303
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.



-25
-20
-15
-10

-5
0
5

10
15
20
25

 LibRadtran  MODTRAN

(b)

Day-time

>12mm9-12mm6-9mm3-6mm

Bi
as

 (W
m

-2
)

<3mm
Precipitable Water Vapour (mm)

(a)

N: 26% N: 39% N: 21% N: 4% N: 5% N: 42% N: 36% N: 15% N: 5% N: 2%

-25
-20
-15
-10

-5
0
5

10
15
20
25

Night-time

<3mm 3-6mm 6-9mm 9-12mm >12mm

Figure 4. Box plot of bias (Model-BSRN in Wm−2) versus PWV (mm) (a) at day-time and (b) at night-time between 2010 and 2016. Lower

and upper boundaries for each box are the 25th and 75th percentiles; the solid line is the median value; the crosses indicate values out of

the 1.5 fold box area (outliers); and hyphens are the maximum and minimum values. The blue boxes represent LibRadtran/BSRN and the

red ones represent MODTRAN/BSRN. N indicates the number the measurements in each interval. Shadings show the range of instrumental

error (±3 Wm−2)

measurements (Ohmura et al., 1998; McArthur, 2005). Further specific analysis is needed to understand these differences

which is outside the scope of this work.

5.1.1 Temporal Stability

We have analyzed the temporal stability of the simulation-measurement bias time series during day-time and nigh-time in order

to assess the continuity and consistency of these time series (Figure 5). We define a bias drift as the linear trend of monthly

mean bias, while the change-points (changes in the monthly mean bias time series) are analyzed by using a robust rank order5

change-point test (Lanzante, 1996).

By applying this change-point test, we identified October 2012 as the change point in the monthly mean bias time series at

day-time and night-time for both LibRadtran/BSRN and MODTRAN/BSRN time series at 99% of confidence level (Figure 5).

When analyzing the BSRN LDR and the simulated LDR times series separately, we do not observe any change in the simulated

LDR, but a change point in the BSRN LDR time series at both day-time and night-time. This change point (October 2012)10

coincided with a change in the location of the instrumentation within the IZO facilities.
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bias for LibRadtran/BSRN and MODTRAN/BSRN, respectively. The black dots represent the monthly mean bias. The grey shadings show

the range of ±1SEM (standard error of the monthly mean bias).

6 Summary and Conclusions

Cloud-free longwave downward radiation (LDR) measured at the BSRN Izaña Atmospheric Observatory was compared with

two complex RTMs, LibRadtran v2.0.1 and MODTRAN v6, in the period 2010-2016, for a high number of cases (2062)

grouped in day-time (11 UTC) dataset (in 1048 cases) and night-time (23 UTC) dataset (1014 cases). IZO is an optimal station

to carry out this study, because all the model input parameters (precipitable water vapor, aerosol optical depth, total ozone,

N2O in-situ, CO2 in-situ, CO2 profile and meteorological radiosondes) are measured at the station.5

The agreement between measurements and simulations is excellent and very similar for both models. The mean bias

(simulations-BSRN measurements) is -1.73 Wm−2 (-1.1%) and 0.15 Wm−2 (0.1%) for LibRadtran/BSRN at day-time and

night-time UTC, respectively, and -1.79 Wm−2 (-0.7%) and 1.14 Wm−2 (0.5%) for MODTRAN/BSRN at day-time and night-

time, respectively. Both comparisons showed a RMSE < 3% at day-time and < 2% at night-time. The mean bias and RMSE

are lower than the instrumental uncertainty (±3 Wm−2; 2%; Ohmura et al. (1998); McArthur (2005)).10
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From our study, we state that the absolute differences between BSRN measurements and simulations depend mainly on water

vapour and to a lesser extent on AOD . The observed night-time difference between models and measurements of +5 Wm−2

for PWV> 10 mm support previous studies which suggest a scale change of the World infrared standard group of Pyrgeometers

(WISG) at PMOD/WRC, which serves as reference for atmospheric longwave radiation measurements.

The MODTRAN and LibRadtran performance is very similar. Both models have demonstrated to be very useful tools for

LDR quality control, as well as for assessing the impact of atmospheric constituents on the Earth-atmosphere energy balance.5
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